\$4.3 The solution of the Renormalization
Group equation
Recall from last time:

$$
\begin{equation*}
\left[k \frac{\partial}{\partial K}+\beta(u) \frac{\partial}{\partial u}-\frac{1}{2} N \gamma_{d}(u)\right] \Gamma_{R}^{(N)}\left(k_{i} ; u, k\right)=0 \tag{1}
\end{equation*}
$$

where

$$
\beta(u)=\left(k \frac{\partial u}{\partial K}\right)_{\lambda}, \quad \gamma_{\phi}(u)=k\left(\frac{\partial \ln z_{\phi}}{\partial k}\right)_{\lambda}
$$

$\frac{\text { Claim: }}{\Gamma_{R}^{(N)}\left(k_{i} ; u, k\right) \equiv \exp \left[-\frac{N}{2} \int_{1}^{\rho} \gamma_{\phi}(u(\rho)) \frac{d x}{x}\right] \Gamma_{R}^{(N)}\left(k_{i}, u(\rho), k \rho\right)}$
is a solution of (1).
Here $u(\rho)$ is the solution of the diff equation:

$$
\begin{equation*}
\rho \frac{\partial u(\rho)}{\partial \rho}=\beta(u(\rho)), \quad u(\rho=1)=1 \tag{3}
\end{equation*}
$$

Proof:

$$
\begin{aligned}
& {\left[k \frac{\partial}{\partial k}+\beta(u) \frac{\partial}{\partial u}-\frac{1}{2} N_{r_{\phi}}(u)\right] \Gamma_{R}^{(N)}\left(k_{i} ; u, k\right)} \\
& \overline{[} \exp \left[-\frac{N}{2} \int_{1}^{\rho} r_{\phi}(u(x)) \frac{d x}{x}\right]\left[k \rho \frac{\partial}{\partial(k \rho)}+\beta(u) \frac{\partial}{\partial u}\left(-\frac{N}{2} \int_{1}^{\rho} r_{\phi}(u(u)) \frac{x_{x}}{x}\right)\right. \\
& +\beta(u) \frac{\partial u p)}{\partial u} \frac{\partial}{\partial u(p)}-\frac{1}{2} N_{\left.r_{\phi}(u)\right] \Gamma_{R}^{(N)}\left(k_{i} ; u(\rho), k \rho\right)}
\end{aligned}
$$

Use
Use

$$
-\frac{N}{2} \int_{1}^{\rho} r_{\phi}(u(x)) \frac{d x}{x} \stackrel{(3)}{=}-\frac{N}{2} \int_{u}^{u(\rho)} \frac{\gamma_{\phi}(u)}{\beta(u)} d u
$$

$$
\Rightarrow \beta(u) \frac{\partial}{\partial u}\left(-\frac{N}{2} \int_{1}^{\rho} r_{\dot{\phi}}(u(x)) \frac{d x}{x}\right)
$$

$$
=\beta(u)\left(-\frac{N}{2} \frac{\partial u(\rho)}{\partial u} \frac{\gamma_{\phi}(u(\rho))}{\rho(u(\rho))}+\frac{N}{2} \frac{\gamma_{\phi}(u)}{\beta(u)}\right)
$$

$$
\begin{aligned}
& =-\frac{N}{2} \underbrace{\beta(u) \frac{\partial u(\rho)}{\partial u}} \frac{\gamma_{\phi}(u(\rho))}{\beta(u(\rho))}+\frac{N}{2} \gamma_{\phi}(u) \\
& =R \frac{\partial u}{\partial R} \frac{\partial u(\rho)}{\partial u}
\end{aligned}
$$

$$
=R \frac{\partial u}{\partial k} \frac{\partial u(p)}{\partial u}
$$

$$
=k \frac{\partial u(\rho)}{\partial R}=k \rho \frac{\partial u(\rho)}{\partial(R \rho)}=\beta(u(\rho))
$$

$$
=-\frac{N}{2} \gamma_{\phi}(u(\rho))+\frac{N}{2} \gamma_{\phi}(u)
$$

$$
=\exp [-\frac{N}{2} \int_{1}^{\rho} \gamma_{\phi}\left(u\left(\sigma_{\theta}\right) \frac{d x}{x}\right][\underbrace{\left[(R \rho) \frac{\partial}{\partial\left(\varphi_{\varphi}\right)}+\beta(u(\rho)) \frac{\partial}{\partial u()}-\frac{N}{2} \gamma_{\phi}(u(\rho))\right]}_{=0} \underbrace{(N)\left(R_{i}, u(\rho) k_{\rho}\right)}_{R}
$$

$$
=0
$$

In Chapter 3 we had seen that

$$
\left[\Gamma^{(N)}\right]=\Lambda^{N+d-\frac{1}{2} N d}
$$

\rightarrow rescaling gives

$$
\begin{equation*}
\Gamma_{R}^{(N)}\left(k_{i} ; u, k\right)=(k \rho)^{\left(N+d-\frac{1}{2} N d\right)} \exp \left[-\frac{N}{2} \int \gamma_{\phi}(u(x)) \frac{d x}{x}\right] T_{R}^{(N)}\left(\frac{k_{i}}{\left.\frac{c}{c \rho} ; u(\rho), 1\right)}\right. \tag{4}
\end{equation*}
$$

Now replace k_{i} by ρk_{i}, giving:

$$
\begin{align*}
\Gamma_{R}^{(N)}\left(\rho k_{i} ; u, k\right) & =\rho^{N+d-\frac{1}{2} N d} \exp \left[-\frac{N}{L} \int_{1}^{\rho} \gamma_{\phi}(u(x)) \frac{d x}{x}\right] \\
& \times \Gamma_{R}^{(N)}\left(k_{i} ; u(\rho), k\right) \tag{5}
\end{align*}
$$

\rightarrow under rescaling of momenta we get: a) multiplication by that scale to the canonical dimension
b) a modified coupling constant, eq. (3)
c) an additional complicated factor

Intuitive picture for eq. (1):
one-dim. flow of particles in a fluid ($t=\ln k$ is time, u is space-coordinate, $\rho(n)$ is velocity of fled, $\frac{1}{2} N r_{\phi}$ is source or sink term)
Let's specify eq. (4) to $T^{(2)}$:

$$
\Gamma_{R}^{(2)}(k ; u, k)=(k \rho) \exp \left[-\int_{1}^{\rho} \gamma \phi \frac{d x}{x}\right] T_{R}^{(2)}\left(\frac{k}{k \rho} ; u(\rho), 1\right)
$$

Choose $\rho=\frac{k}{k}$

$$
\begin{aligned}
& \text { Choose } \rho=\frac{k}{k} \\
& \rightarrow \Gamma_{R}^{(2)}(k ; u, k)=k^{2} \exp \left[-\int_{1}^{k / k} \gamma_{\phi} \frac{d x}{x}\right] \Phi(u(k / k))
\end{aligned}
$$

where $\Phi=T_{R}^{(2)}(1 ; u, 1)$
§4.4 Fixed points, scaling, and anomalous dimensions
critical values of coupling constant:

$$
\beta(u)=0
$$

$(3) \longrightarrow u$ becomes "stationary" or a "fixed point"
eq. (1) at a fixed point $u=u^{*}$ becomes:

$$
\left[k \frac{\partial}{\partial k}-\frac{1}{2} N \gamma_{\phi}\left(u^{*}\right)\right] \Gamma_{R}^{(N)}\left(k_{i} ; u^{*}, k\right)=0
$$

\rightarrow solution is:

$$
\Gamma_{R}^{(N)}\left(k_{i} ; u^{*}, k\right)=k^{\frac{1}{2} N \gamma_{\phi}\left(u^{*}\right)} \Phi\left(k_{i}\right)
$$

Then eq. (5) gives

$$
\begin{equation*}
\Gamma_{R}^{(N)}\left(\rho k_{i} ; u^{*}, k\right)=\rho^{\left(N+d-\frac{1}{2} N d\right)-\frac{1}{2} N r_{\phi}\left(u^{*}\right)} \Gamma_{R}^{(N)}\left(k_{i j} u^{*}, k\right) \tag{6}
\end{equation*}
$$

\rightarrow simple scaling behaviour $\Gamma_{R}^{(2)}$ behaves as

$$
\Gamma_{R}^{(2)}(\rho k)=\rho^{2-\gamma_{\phi}\left(u^{*}\right)} \Gamma(k)
$$

$\eta \equiv \frac{1}{2} \gamma_{\phi}\left(u^{*}\right)$ is called the "anomalous dimension" of the field ϕ.
Let wo explain this:

Since Γ has dimension $\Lambda^{N+d-\frac{1}{2} N d}$, the free vertex scales as

$$
\Gamma^{(N) o}\left(\rho k_{i}\right)=\rho^{d-N[(d / 2)-1]} \Gamma^{(N) o}\left(k_{i}\right)
$$

\rightarrow define the dimension of ϕ by:

$$
\Gamma^{(N)}\left(\rho k_{i}\right)=\rho^{d-N d \phi} \Gamma^{(N)}\left(k_{i}\right)
$$

\rightarrow in the free theory we get

$$
d_{\phi}^{0}=\frac{d}{2}-1
$$

i.e the naive dimension of the field. Now at a fixed point, we have the scaling (6):

$$
d_{\phi}=\frac{d}{2}-1+\eta, \quad \eta \neq 0
$$

In such a situation, we have $\Gamma_{R}^{(2)}(k)=C k^{22} k^{2-2 \eta}, C$ constant
\rightarrow dimensional analysis gives $\Gamma^{(2)}(k)=C^{\prime} \Lambda^{27} k^{2-2 \eta}$
\rightarrow at a fixed point $n=n^{*}$:

$$
Z_{\phi}\left(u^{*}, k / \Lambda\right)=C^{\prime \prime}(k / \Lambda)^{\eta}
$$

Approaching the fixed point-asymptotic freedom:
Assume that β has simple zero at u^{*}

$$
\rightarrow \beta(u)=a\left(u^{x}-u\right)
$$

Inserting into (3), we get

$$
\begin{equation*}
\frac{\partial u(s)}{\partial s}=a\left(u^{*}-u\right) \text {, where } s \equiv \ln p \tag{7}
\end{equation*}
$$

\rightarrow solved by $u(s)=u^{*}-c e^{-a s}$
boundary condition: $u(s=0)=u_{0} \Rightarrow u^{*}-c=u_{0}$ and $c=u^{*}-u_{0}$
Two limits of relevance:

- $s \rightarrow-\infty$, i.e $\rho \rightarrow 0$: relevant for IR physics
- $s \rightarrow+\infty$, i.e. $\rho \rightarrow \infty$: rele vaunt for UV physics

From (7) we see:

- if $a>0: u(s) \xrightarrow{s \rightarrow \infty} u^{*}$
- if $a<0: u(s) \xrightarrow{s \rightarrow-\infty} u^{*}$
\rightarrow Renormalized coupling constant will flow to u^{*} either in $U V$, or in IR!

We call u_{1}^{*} a $u v$-stable fixed point and u_{2}^{*} an IR-stable fixed point.
If we start at a UV fixed-point and $\rho \rightarrow 0$, then u will move away from that point towards the nearest IR-fixed point. \longrightarrow coupling constants ättracted" to the IR fixed-point
Let us see what happens to γ_{ϕ} :

$$
\begin{align*}
& \gamma_{\phi}(u)=r_{\phi}^{*}+\gamma_{\phi}^{\prime}\left(u-u^{*}\right) \\
& \rightarrow \int_{1}^{p} r_{\phi}(u(s)) \frac{d x}{x}=\int_{u_{0}}^{u(s)} \frac{r_{\phi}\left(u^{\prime}\right)}{\beta\left(u^{\prime}\right)} d u^{\prime} \\
& =\gamma_{\phi}^{*} \int_{u_{0}}^{u(s)} \frac{d u^{\prime}}{a\left(u^{*}-u^{\prime}\right)}-\frac{r_{\phi}^{\prime}}{a} \int_{u_{0}}^{u(s)} d u^{\prime} \\
& =\frac{r_{\phi}^{*}}{a}[\underbrace{\ln \left(u^{*}-u_{0}\right)-\ln (\underbrace{u^{*}-u(s)}_{=\left(u^{*}-u_{0}\right) e^{-a s}})}_{=-\ln \left(e^{-a s}\right)}]-\frac{\gamma_{\phi}^{\prime}}{a}\left[u(s)-u_{0}\right] \\
& =\gamma_{\phi}^{*} s-\frac{\gamma_{\phi}^{\prime}}{\rho^{\prime}}\left[u(s)-u_{0}\right] \tag{9}\\
& \begin{aligned}
\stackrel{u(s) \rightarrow u^{*}}{\Rightarrow} \exp \left[-\frac{N}{2} \int_{1}^{\rho_{\phi}} \gamma_{\phi} \frac{d x}{x}\right] & =\underbrace{e^{-\frac{N}{2} \gamma_{\phi}^{*} s}} \underbrace{-N \gamma_{\phi}^{*} / 2} \underbrace{e^{\frac{N}{2} \gamma_{d}^{\prime}\left(u^{*}-u_{0}\right)}}_{(10)}=C \rho^{-N \gamma_{\phi}^{*} / 2}
\end{aligned}
\end{align*}
$$

\rightarrow obtain anomalous dimension as asymptotic behavior of vertex functions as functions of the scale ρ of the momenta!
Now consider the following situation:

- start at an interacting theory, $u_{0} \neq 0$
- suppose β vanisher as $u \rightarrow 0$
\rightarrow in the asymptotic limits (UV or IR), $u(s)$ of tend to zero
\rightarrow theory will be "asymptotically free"

